3.161 \(\int (a+a \sin (e+f x))^{7/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx\)

Optimal. Leaf size=226 \[ -\frac{2 a^4 A \cos (e+f x) (c-c \sin (e+f x))^{7/2}}{35 f \sqrt{a \sin (e+f x)+a}}-\frac{4 a^3 A \cos (e+f x) \sqrt{a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}{35 f}-\frac{a^2 A \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{7 f}-\frac{a A \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{7/2}}{7 f}-\frac{B \cos (e+f x) (a \sin (e+f x)+a)^{7/2} (c-c \sin (e+f x))^{7/2}}{8 f} \]

[Out]

(-2*a^4*A*Cos[e + f*x]*(c - c*Sin[e + f*x])^(7/2))/(35*f*Sqrt[a + a*Sin[e + f*x]]) - (4*a^3*A*Cos[e + f*x]*Sqr
t[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(7/2))/(35*f) - (a^2*A*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2)*(c -
 c*Sin[e + f*x])^(7/2))/(7*f) - (a*A*Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^(7/2))/(7*f)
 - (B*Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2)*(c - c*Sin[e + f*x])^(7/2))/(8*f)

________________________________________________________________________________________

Rubi [A]  time = 0.559084, antiderivative size = 226, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.075, Rules used = {2973, 2740, 2738} \[ -\frac{2 a^4 A \cos (e+f x) (c-c \sin (e+f x))^{7/2}}{35 f \sqrt{a \sin (e+f x)+a}}-\frac{4 a^3 A \cos (e+f x) \sqrt{a \sin (e+f x)+a} (c-c \sin (e+f x))^{7/2}}{35 f}-\frac{a^2 A \cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{7/2}}{7 f}-\frac{a A \cos (e+f x) (a \sin (e+f x)+a)^{5/2} (c-c \sin (e+f x))^{7/2}}{7 f}-\frac{B \cos (e+f x) (a \sin (e+f x)+a)^{7/2} (c-c \sin (e+f x))^{7/2}}{8 f} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sin[e + f*x])^(7/2)*(A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^(7/2),x]

[Out]

(-2*a^4*A*Cos[e + f*x]*(c - c*Sin[e + f*x])^(7/2))/(35*f*Sqrt[a + a*Sin[e + f*x]]) - (4*a^3*A*Cos[e + f*x]*Sqr
t[a + a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(7/2))/(35*f) - (a^2*A*Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2)*(c -
 c*Sin[e + f*x])^(7/2))/(7*f) - (a*A*Cos[e + f*x]*(a + a*Sin[e + f*x])^(5/2)*(c - c*Sin[e + f*x])^(7/2))/(7*f)
 - (B*Cos[e + f*x]*(a + a*Sin[e + f*x])^(7/2)*(c - c*Sin[e + f*x])^(7/2))/(8*f)

Rule 2973

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(B*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(f*(
m + n + 1)), x] - Dist[(B*c*(m - n) - A*d*(m + n + 1))/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] &&
!LtQ[m, -2^(-1)] && NeQ[m + n + 1, 0]

Rule 2740

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Sim
p[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n)/(f*(m + n)), x] + Dist[(a*(2*m - 1))/(m
 + n), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && E
qQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m])
 &&  !(ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])

Rule 2738

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
(-2*b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rubi steps

\begin{align*} \int (a+a \sin (e+f x))^{7/2} (A+B \sin (e+f x)) (c-c \sin (e+f x))^{7/2} \, dx &=-\frac{B \cos (e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{7/2}}{8 f}+A \int (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{7/2} \, dx\\ &=-\frac{a A \cos (e+f x) (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{7/2}}{7 f}-\frac{B \cos (e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{7/2}}{8 f}+\frac{1}{7} (6 a A) \int (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{7/2} \, dx\\ &=-\frac{a^2 A \cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2}}{7 f}-\frac{a A \cos (e+f x) (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{7/2}}{7 f}-\frac{B \cos (e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{7/2}}{8 f}+\frac{1}{7} \left (4 a^2 A\right ) \int (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2} \, dx\\ &=-\frac{4 a^3 A \cos (e+f x) \sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}{35 f}-\frac{a^2 A \cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2}}{7 f}-\frac{a A \cos (e+f x) (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{7/2}}{7 f}-\frac{B \cos (e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{7/2}}{8 f}+\frac{1}{35} \left (8 a^3 A\right ) \int \sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2} \, dx\\ &=-\frac{2 a^4 A \cos (e+f x) (c-c \sin (e+f x))^{7/2}}{35 f \sqrt{a+a \sin (e+f x)}}-\frac{4 a^3 A \cos (e+f x) \sqrt{a+a \sin (e+f x)} (c-c \sin (e+f x))^{7/2}}{35 f}-\frac{a^2 A \cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{7/2}}{7 f}-\frac{a A \cos (e+f x) (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{7/2}}{7 f}-\frac{B \cos (e+f x) (a+a \sin (e+f x))^{7/2} (c-c \sin (e+f x))^{7/2}}{8 f}\\ \end{align*}

Mathematica [A]  time = 1.673, size = 135, normalized size = 0.6 \[ \frac{a^3 c^3 \sec (e+f x) \sqrt{a (\sin (e+f x)+1)} \sqrt{c-c \sin (e+f x)} (19600 A \sin (e+f x)+3920 A \sin (3 (e+f x))+784 A \sin (5 (e+f x))+80 A \sin (7 (e+f x))-1960 B \cos (2 (e+f x))-980 B \cos (4 (e+f x))-280 B \cos (6 (e+f x))-35 B \cos (8 (e+f x)))}{35840 f} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sin[e + f*x])^(7/2)*(A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^(7/2),x]

[Out]

(a^3*c^3*Sec[e + f*x]*Sqrt[a*(1 + Sin[e + f*x])]*Sqrt[c - c*Sin[e + f*x]]*(-1960*B*Cos[2*(e + f*x)] - 980*B*Co
s[4*(e + f*x)] - 280*B*Cos[6*(e + f*x)] - 35*B*Cos[8*(e + f*x)] + 19600*A*Sin[e + f*x] + 3920*A*Sin[3*(e + f*x
)] + 784*A*Sin[5*(e + f*x)] + 80*A*Sin[7*(e + f*x)]))/(35840*f)

________________________________________________________________________________________

Maple [A]  time = 0.33, size = 142, normalized size = 0.6 \begin{align*}{\frac{ \left ( 35\,B \left ( \cos \left ( fx+e \right ) \right ) ^{6}\sin \left ( fx+e \right ) +40\,A \left ( \cos \left ( fx+e \right ) \right ) ^{6}+35\,B\sin \left ( fx+e \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{4}+48\,A \left ( \cos \left ( fx+e \right ) \right ) ^{4}+35\,B \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sin \left ( fx+e \right ) +64\,A \left ( \cos \left ( fx+e \right ) \right ) ^{2}+35\,B\sin \left ( fx+e \right ) +128\,A \right ) \sin \left ( fx+e \right ) }{280\,f \left ( \cos \left ( fx+e \right ) \right ) ^{7}} \left ( -c \left ( -1+\sin \left ( fx+e \right ) \right ) \right ) ^{{\frac{7}{2}}} \left ( a \left ( 1+\sin \left ( fx+e \right ) \right ) \right ) ^{{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sin(f*x+e))^(7/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(7/2),x)

[Out]

1/280/f*(35*B*cos(f*x+e)^6*sin(f*x+e)+40*A*cos(f*x+e)^6+35*B*sin(f*x+e)*cos(f*x+e)^4+48*A*cos(f*x+e)^4+35*B*co
s(f*x+e)^2*sin(f*x+e)+64*A*cos(f*x+e)^2+35*B*sin(f*x+e)+128*A)*(-c*(-1+sin(f*x+e)))^(7/2)*sin(f*x+e)*(a*(1+sin
(f*x+e)))^(7/2)/cos(f*x+e)^7

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sin \left (f x + e\right ) + A\right )}{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{7}{2}}{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(7/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(7/2),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^(7/2)*(-c*sin(f*x + e) + c)^(7/2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.81399, size = 324, normalized size = 1.43 \begin{align*} -\frac{{\left (35 \, B a^{3} c^{3} \cos \left (f x + e\right )^{8} - 35 \, B a^{3} c^{3} - 8 \,{\left (5 \, A a^{3} c^{3} \cos \left (f x + e\right )^{6} + 6 \, A a^{3} c^{3} \cos \left (f x + e\right )^{4} + 8 \, A a^{3} c^{3} \cos \left (f x + e\right )^{2} + 16 \, A a^{3} c^{3}\right )} \sin \left (f x + e\right )\right )} \sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c}}{280 \, f \cos \left (f x + e\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(7/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(7/2),x, algorithm="fricas")

[Out]

-1/280*(35*B*a^3*c^3*cos(f*x + e)^8 - 35*B*a^3*c^3 - 8*(5*A*a^3*c^3*cos(f*x + e)^6 + 6*A*a^3*c^3*cos(f*x + e)^
4 + 8*A*a^3*c^3*cos(f*x + e)^2 + 16*A*a^3*c^3)*sin(f*x + e))*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c
)/(f*cos(f*x + e))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))**(7/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \sin \left (f x + e\right ) + A\right )}{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac{7}{2}}{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sin(f*x+e))^(7/2)*(A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(7/2),x, algorithm="giac")

[Out]

integrate((B*sin(f*x + e) + A)*(a*sin(f*x + e) + a)^(7/2)*(-c*sin(f*x + e) + c)^(7/2), x)